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Abstract
The joint effect of the electron–phonon interaction and Kondo effect on
nonequilibrium transport through a single molecule transistor is investigated
by using the improved canonical transformation scheme and extended equation
of motion approach. Two types of Kondo phonon-satellite with different
asymmetric shapes are fully confirmed in the spectral function, and are related
to the electron spin singlet or hole spin singlet, respectively. Moreover, when
a moderate Zeeman splitting is caused by a local magnetic field, the Kondo
satellites in the spin-resolved spectral function are found to disappear on one
side of the main peak, and they disappear on the opposite side for the opposite
spin component. All these peculiar signatures that manifest themselves in the
nonlinear differential conductance are explained with a clear physics picture.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Kondo effect as a manifestation of strong correlations between conduction electrons and
spin impurity has been extensively studied in the context of quantum dot physics in past
years [1–7]. Recently, its realization in the single-molecule transistor (SMT) has attracted a
lot of attention [8–14]. In particular, the latest experiments in an SMT, in which the phonon-
satellite has been clearly observed even in the Kondo regime [15–17] owing to the enhanced
electron–vibration coupling in the molecule [18–20], has stimulated great interest to investigate
the interplay of the electron–phonon interaction (EPI) and the Kondo effect in the transport
through the SMT.

According to our recent investigation on the spectral function of the SMT in the absence
of Coulomb interaction, the phonon-satellites are quite sensitive to the lead Fermi levels with
respect to the localized level [21]. When the temperature is too low to excite phonons thermally,

0953-8984/06/235435+12$30.00 © 2006 IOP Publishing Ltd Printed in the UK 5435

http://dx.doi.org/10.1088/0953-8984/18/23/015
mailto:zzchen@castu.tsinghua.edu.cn
mailto:bfzhu@castu.tsinghua.edu.cn
http://stacks.iop.org/JPhysCM/18/5435


5436 Z-Z Chen et al

the phonon-satellites can only develop below (above) the resonant level if this level is occupied
(empty) initially, as then electrons can only emit phonons. On the other hand, in the Kondo
regime with the EPI ignored, it is well known that two collective spin singlet states will be
formed between the localized state and the excited electron states above the Fermi levelµ or the
excited hole states below µ because of spin exchange processes [22, 23], which will contribute
to the formation of the sharp Kondo peak pinning at the Fermi surface in the local density of
states. It is thus expected that interesting transport physics may result from the interplay of both
the EPI and the Kondo effect, in particular out of the equilibrium, as both effects are sensitive
to the Fermi levels at the source and drain electrode.

Several theoretical techniques have been developed and applied to address the joint effects
of the EPI and the Kondo correlation on transport through a quantum dot or an SMT [24–34].
According to these works, the equilibrium properties, in particular the renormalized effect on
the Kondo correlation due to the EPI, have been well described. For example, with the help of
the numerical renormalization group approach, the renormalized effect has been predicted for a
wide range of parameters in the equilibrium [26–29]. With the help of a generalized Schrieffer–
Wolff transformation, under the assumption that the system stays in equilibrium in the strongly
asymmetric coupling case, the nonlinear differential conductance has been given [30] with
the Kondo satellite structure exhibited. On the other hand, owing to the lack of satisfactory
treatment for the nonequilibrium Kondo problem, little effort has been made to investigate
how the Kondo phonon-satellites develop and manifest themselves in the nonequilibrium
transport. However, since the Kondo phonon-satellites can only be observed at finite bias
voltage experimentally, when the system is driven out of equilibrium [15–17], it is certainly of
importance to investigate the key signature of the nonequilibrium Kondo phonon effect. As far
as we know, by the real-time diagrammatic formulation, Köning et al have given the spectral
function as well as the differential conductance with Kondo satellites in the nonequilibrium
situation [24, 25]. Here we shall develop another easier and straightforward approach, which
will combine the improved non-perturbative canonical transformation treatment of the EPI [21]
with the extended equation-of-motion (EOM) method of the nonequilibrium Green functions.
This approach, although it is not rigorous in quantitative description, has the advantage of
intuitiveness and can provide a semi-quantitative understanding of the phonon-assisted Kondo
effect, particularly for strong electron–vibration coupling, as well as for the nonequilibrium
situation.

Based on the approach mentioned above, in the present paper, we shall mainly focus on
how the Kondo satellites develop and manifest themselves in the nonequilibrium transport
through the SMT, and how these Kondo satellites are affected by an applied local magnetic
field. Following this introduction, we shall give our model and method in section 2 and 3,
respectively. Our main results are presented in section 4, which include: (i) the Kondo phonon-
satellites may exhibit quite different asymmetric line-shapes with respect to the Kondo main
peak in the spectral function, and also in the nonlinear differential conductance; (ii) two types
of spin exchange processes, associated with the collective spin singlets formed by electron
states and by hole states respectively, can be clearly distinguished by the Kondo satellites; and
(iii) with a moderate Zeeman splitting exceeding the width of Kondo peak, its Kondo phonon-
satellites only appear on one side of the main Kondo peak in one spin-resolved spectral function,
and on the opposite side for the opposite spin component. Finally, the conclusions are drawn.

2. Model

The SMT system studied in the present paper can usually be described as the Anderson–
Holstein model, in which a single localized state coupled linearly to one local vibration mode
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and to the left (L) and right (R) non-interacting leads, namely

H =
∑

α;k,σ
εαkc†

αkσ cαkσ +
∑

σ

εσnσ + U0n↑n↓ + h̄ω0a†a

+
∑

σ

λnσ (a† + a)+
∑

α;k,σ
(Vαkc†

αkσdσ + h.c.), (1)

where c†
αkσ (cαkσ ) and d†

σ (dσ ) are the creation (annihilation) operators for the lead electron
with energy εαk and the localized SMT electron with energy εσ , respectively, σ denotes the
spin index and the lead index α = L,R. U0 is the on-site Coulomb repulsion, and nσ = d†

σdσ .
The operator a† (a) creates (annihilates) the local vibration mode with frequency ω0, λ is the
EPI strength, and Vαk is the tunnelling coupling between the localized and lead electrons, which
results in a level broadening � = (�L + �R)/2, where

�α(ω) ≡ 2π
∑

k

|Vαk|2δ(ω − εαk). (2)

To treat the EPI non-perturbatively, by the canonical transformation, S = λ
ω0

∑
σ nσ (a† −

a), the Hamiltonian is transformed into H̄ ≡ eSHe−S = H̄ph + H̄el, where the phonon part
H̄ph = h̄ω0a†a, and the electron part turns out to be the Anderson Hamiltonian, namely

H̄el =
∑

α,k,σ

εαkc†
αkσ cαkσ +

∑

σ

ε̄σnσ + Ū0n↑n↓ +
∑

α,k,σ

(V̄αkc†
αkσdσ + h.c.). (3)

The parameters with a bar in equation (3) correspond to the renormalized ones resulting
from the canonical transformation, i.e., the SMT level is shifted to ε̄σ = εσ − gω0 with
g ≡ (λ/ω0)

2, and the on-site repulsion is renormalized to Ū0 = U0 − 2gω0. When the
charging energy is significantly reduced by screening due to the electrodes [35], Ū0 may
become negative for very strong EPI, which will result in the anisotropic Kondo effect [26–29].
But in most realistic situations, the charging energy is much larger than the EPI energy [18–20],
so we shall limit ourselves to the standard Kondo effect, i.e. Ū0 remains positive. Besides,
V̄σk ≡ VσkX with X ≡ exp[−(λ/ω0)(a† − a)], indicating that a cloud of phonons will be
created or destroyed during the hopping processes. As it contains the phonon operator X, the
renormalized Hamiltonian H̄el has not been fully decoupled. For the present work, we are
specially interested in the cases where the EPI is sufficiently strong compared to the tunnelling
coupling so that a local polaron is formed. Then we can approximate the phonon operator X by
its expectation value in the thermal equilibrium, 〈X〉 = exp[−g(Nph + 1/2)], with Nph defined
as the population of phonons at temperature T . Although it uses the mean field approximation,
this method has been used widely and has obtained reasonable successes [36–41].

With this mean field approximation, the lesser Green function can then be separated into
the electron part and phonon part,

G<
σ (t) ≡ i

〈
d†
σ (0)dσ (t)

〉 = i
〈
d

†
σ eiHt dσ e−iHt

〉
= i

〈
d†
σ eiHelt dσ e−iHelt

〉

el

〈
X†eiHpht Xe−iHpht

〉

ph
.

(4)

The trace of the phonon part can be evaluated by the Feynman disentangling technique [39].
The lesser Green function of the SMT electron can be decoupled as

G<
σ (ω) =

∞∑

n=−∞
Ln Ḡ<

σ (ω + nω0), (5)

and similarly the greater Green function is formulated as

G>
σ (ω) =

∞∑

n=−∞
Ln Ḡ>

σ (ω − nω0). (6)
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Here Ḡ>(<)
σ is the dressed Green function associated with H̄el, and

Ln = e−g(2Nph+1)enω0/2kBT In

(
2g

√
Nph

(
Nph + 1

))
, (7)

in which In(z) is the nth Bessel function of the complex argument. The spectral function is
then calculated with the lesser and greater Green functions via

Aσ (ω) = i(G>
σ (ω)− G<

σ (ω)). (8)

It should be emphasized that people usually evaluate the spectral function via Aσ (ω) =
i(Gr

σ (ω) − Ga
σ (ω)), in which the retarded and advanced Green functions, Gr

σ and Ga
σ , are

approximately separated into the electron and phonon parts by ignoring the difference between
Nph and Nph +1, which works only in the high-temperature limit [36–38]. However, the Kondo
phonon problem studied here is certainly not the case, as the characteristic Kondo temperature,
TK, is very low. Hence the prescription we have recently made may be more appropriate [21].

3. Keldysh Green functions

Within the Keldysh formalism, the dressed Green functions Ḡ>(<)
σ can be derived from H̄el

with the help of the EOM approach. Since the usual approximation in decoupling the higher-
order Green functions generated by the EOM is valid only near or above the Kondo temperature
TK [42, 43], at lower temperature, as in the present situation, the approximation developed by
Lacroix may be more appropriate [44]. In the original Lacroix approach, only a system with
spin degeneracy and infinite charging energy was discussed in the equilibrium. To apply to the
nonequilibrium situation with finite U0 and Zeeman splitting, we have extended it accordingly.
Thus, the usually ignored higher-order retarded Green functions are taken into reconsideration.
For example, 〈〈dσ̄ c†

αkσ̄ cα′k′σ ,d†
σ 〉〉 is now approximately decoupled as 〈dσ̄ c†

αkσ̄ 〉〈〈cα′k′σ ,d†
σ 〉〉,

and the matrix element 〈dσ̄ c†
αkσ̄ 〉 should be determined self-consistently by the nonequilibrium

Green function technique.
From the standard derivation of the EOM [45]3, the dressed retarded Green function turns

out to be

Ḡr
σ (ω) = 1 − (〈n̄σ̄ 〉 + P̄σ̄ (ω̄0

σ̄ )+ P̄∗
σ̄ (−ω̄U )

)

ω − ε̄σ − 	̄(T )(ω)+ Ū0	̄
(1)
σ̄ (ω)

ω−ε̄σ−Ū0−	̄(T )(ω)−	̄(3)
σ̄ (ω)

+ 〈n̄σ̄ 〉 + P̄σ̄ (ω̄0
σ̄ )+ P̄∗

σ̄ (−ω̄U )

ω − ε̄σ − Ū0 − 	̄(T )(ω)− Ū0	̄
(2)
σ̄ (ω)

ω−ε̄σ−	̄(T )(ω)−	̄(3)
σ̄ (ω)

, (9)

where

ω̄0
σ̄ ≡ ω + ε̄σ̄ − ε̄σ ,

ω̄U ≡ ω − ε̄σ − ε̄σ̄ − Ū0,
(10)

and the correlation function between the SMT level and leads, P̄σ̄ (ω), is defined as

P̄σ̄ (ω) ≡
∑

αk

V̄ ∗
αk〈d†

σ̄ cαkσ̄ 〉gr
αk(ω), (11)

3 After submitting our manuscript, a closely related work by V Kashcheyevs et al with similar (with a slightly different
truncated approximation) EOM derivations of the Green functions has appeared; the details of the derivation can be
found in their appendix [46].
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in which gr
αk(ω) is the unperturbed retarded Green function of the lead electron. In the above

the self-energy associated with the resonant tunnelling processes is defined as

	̄(T )(ω) ≡
∑

αk

|V̄αk|2gr
αk(ω), (12)

and the self-energies related to the Kondo correlation are respectively expressed as

	̄
(1)
σ̄ (ω) = 	̄

(0)
σ̄ (ω)− 	̄(T )(ω)

[
P̄σ̄ (ω̄

0
σ )+ P̄∗

σ̄ (−ω̄U )
]
,

	̄
(3)
σ̄ (ω) = 	̄(T )(ω̄0

σ̄ )− (
	̄(T )(−ω̄U )

)∗
,

	̄
(2)
σ̄ (ω) = 	̄

(3)
σ̄ (ω)− 	̄

(1)
σ̄ (ω).

(13)

Here 	̄(0)
σ̄ (ω) = F̄σ̄ (ω̄0

σ̄ )− F̄∗
σ̄ (−ω̄U )+ B̄σ̄ (ω),

F̄σ̄ (ω) =
∑

αk,α′k′
V̄ ∗
αkV̄α′k′ 〈c†

α′k′σ̄ cαkσ̄ 〉gr
αk(ω), (14)

and

B̄σ̄ (ω) = −2i Im

{
∑

α′k′
V̄ ∗
α′k′

〈
d†
σ̄ cα′k′σ̄

〉} [
∑

αk

|V̄αk|2
(
gr
αk(ω)

)2

]
. (15)

In the wide-band limit, 	̄(T )(ω) ≈ −i�̄, and

	̄
(0)
σ̄ (ω) ≈

∑

α

�̄α

2π

[
ψ

(
1

2
+ ω̄U + µα

i2πkBT

)
− ψ

(
1

2
+ ω̄0

σ̄ − µα

i2πkBT

)
− iπ

]
, (16)

where the Psi function ψ is the logarithmic derivative of the gamma function. Now the self-
consistent equation for P̄σ̄ (ω) is simplified as

P̄σ̄ (ω) =
∫

dω′

2π

[�̄L fL(ω
′)+ �̄R fR(ω

′)]Ḡr∗
σ̄ (ω

′)
ω − ω′ + i0+ , (17)

which, together with equation (9), gives the dressed retarded Green function Ḡr
σ .

As we will see, at zero temperature, not only F̄σ̄ (ω), but also P̄σ̄ (ω) will diverge
logarithmically and then both contribute to the sharp Kondo resonance at each Fermi surface.
Therefore, P̄σ̄ (ω) should not be ignored as in the previous approaches [42, 43]. Generally,
this EOM approach works for most cases; however, it fails to give the Kondo resonance in the
particle–hole symmetric case. For example, when ε̄↑ = ε̄↓ = −Ū0/2, equations (10), (11), (14)
show that ω̄0

σ̄ = ω̄U , P̄∗
σ̄ (−ω) = −P̄σ̄ (ω), and F̄∗

σ̄ (−ω) = −F̄σ̄ (ω). Therefore the divergent
terms in the expression of the retarded Green function are cancelled with each other and then no
Kondo resonance will show up4. The reason for this limitation is the fact that at the particle–
hole symmetry point, the charge fluctuations are completely quenched; therefore the EOM
approach cannot be applied [14].

By the Keldysh formula Ḡ>(<)
σ = Ḡr

σ 	̄
>(<)
σ Ḡa

σ , in which the greater (lesser) self-energy
is evaluated by the ansatz adopted by Ng [47], the dressed greater and lesser Green functions
are obtained as

Ḡ>
σ (ω) = i([�̄L(1 − fL(ω))+ �̄R(1 − fR(ω))]) Im Ḡr

σ (ω)/�̄,

Ḡ<
σ (ω) = −i[�̄L fL(ω)+ �̄R fR(ω)] Im Ḡr

σ (ω)/�̄.
(18)

Substituting equation (18) into equations (5) and (6), one obtains the greater (lesser) Green
function and subsequently the spectral function of the SMT.

It is noted that, with the infinity charging energy and zero Zeeman splitting in
the equilibrium, our results will recover to Lacroix’s one [44]. Together with the

4 The drawback of the EOM at the particle–hole symmetric point has also been discussed in [46].
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(a)

(b)

Figure 1. The spectral functions of the spin-degenerate local electrons, i.e., Aσ , with (a) and without
(b) the EPI. The parameters used in (a) are µL = µR = 0.0, ε0 = −2�, and U0 = 8�, Vbias = 0.
The parameters used in (b) are (µL + µR)/2 = 0, ε0 = −2.5�, kBT = 2 × 10−4�, U0 = 100�,
h̄ω0 = 0.4�. Other parameters have been shown explicitly in each figure.

improved canonical transformation, this generalized EOM method will be our framework for
investigating the Kondo satellites at the nonequilibrium with finite Zeeman splitting. Although
this approach can only give a qualitative description of the shape of the Kondo satellites, it does
predict the correct peak positions [26, 42, 43]. For quantitative description of the renormalized
properties in the equilibrium or exploring wider parameter space, more accurate methods like
the numerical renormalization group (NRG) approach or quantum Monte Carlo calculations
may be appropriate [26–29].

With the spectral function and the lesser Green function given above, the current through
the SMT can be calculated via [48, 49]

J =
∑

σ

ie

2h

∫
dω{[ fL(ω)�L − fR(ω)�R]Aσ (ω)+ (�L − �R)G

<
σ (ω)}, (19)

and the differential conductance can be obtained straightforwardly as G = ∂ J/∂Vbias.

4. Spectral function and differential conductance

4.1. Spin-degenerate case

First, we will discuss the spin-degenerate case, i.e., ε↑ = ε↓ = ε0. The spectral function in the
absence of the EPI is plotted in figure 1(a) for different Ū0, which shows that besides the two
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Figure 2. Schematic illustration for the spin exchange processes associated with the formation of
the Kondo satellites.

broad resonant peaks at ε̄0 and ε̄0 + Ū0, there will be a sharp Kondo resonance developed at
µL(R). By increasing Ū0, as can be observed from the inset of figure 1(a), this Kondo resonant
peak can be tuned to be more and more asymmetric, which is a manifestation of the particle–
hole asymmetry of the SMT.

When the electron–phonon interaction is turned on, as shown in figure 1(b), the Kondo
peak will be split into a set of phonon-satellites spaced by a multiple of the phonon
frequency. When the system is driven out of equilibrium by applying a bias voltage, the
main Kondo peak will be split into two weakened peaks pinned at the Fermi levels of the
left and right lead, respectively, and the Kondo phonon-satellites will also be split into two
corresponding sub-sets. These results agree well with previous works, which validates the
present framework [24, 25, 42, 43].

The underlying physics about how and why the Kondo satellites develop in such a way
can be intuitively understood with the help of figure 2. As illustrated by figure 2(a1), a local
hole state in the SMT exchanges with the excited holes at leads below the Fermi energy µ to
form a Kondo spin-singlet. When an electron hops to the local state by emitting a phonon, as
shown in figure 2(a2), only the holes with energy below µ− h̄ω0 can exchange with the local
hole, because the phonon absorption is unavailable at very low temperature and the energy
conservation law must be satisfied in the interaction process. Thus a phonon-satellite peak
at µ − h̄ω0 appears in the density of states or tunnelling spectra. Similarly, a spin-singlet
consisting of a localized electron and excited electrons above µ is depicted in figure 2(b1), and
only the electrons above µ+ h̄ω0 can exchange with the local electron if the hopping processes
are accompanied by emitting a phonon as shown in figure 2(b2), which will give rise to the
satellite peak at µ+ h̄ω0. That means although both processes shown in figures 2(a1) and (b1)
contribute to the main Kondo peak, they can be distinguished by their Kondo satellites, namely,
the contributions of each type of exchange processes to the Kondo peak can be picked out in
principle by comparing with the satellites on each side of the main peak.

Figure 1(b) also shows that the satellites on different sides of the Kondo main peak may
take on apparent sharp asymmetric lineshapes. The reason for these sharp feature lies in the
sharp Fermi distributions in the leads at very low temperature, where the electron excitations
and the hole excitations are separated from each other sharply by the Fermi surface. For
example, the phonon-assisted spin exchange processes mentioned above have sharp energy
boundaries as µL(R)±nω0; therefore they may result in the sharp features at ω = µL(R)±nω0 as
shown in figure 1(b). Besides, if the localized level is broadened so that there is a finite density
of states around µL(R), the electron can also bypass the SMT via the phonon-assisted resonant
tunnelling processes. According to our previous studies [21], these phonon-assisted resonant
tunnelling processes can result in the phonon sidebands at ω = ε̄0 ± nω0, which also exhibit
some sharp asymmetric lineshapes at ω = µL(R) ± nω0 under extremely low temperature.
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Figure 3. The differential conductance for the spin-degenerate case as a function of the bias voltage.
Here ε̄0 = −2.5�, g = 0.5, kBT = 2 × 10−4�, U0 = 100�, and h̄ω0 = 0.1�. As an illustration,
the inset shows the origin of the first Kondo phonon-satellite peak schematically.

These structures superpose over the Kondo phonon-satellites, being jointly responsible for the
apparent sharp asymmetric peaks observed in figure 1(b).

The nonlinear differential conductance versus the bias voltage, i.e., G(Vbias), is plotted in
figure 3 for very low temperature, where G reaches a peak value at Vbias = 0 and then decreases
rapidly as Vbias increases. This zero-bias anomaly is usually regarded as the experimental
evidence for the Kondo effect in quantum dot systems. When eVbias = nh̄ω0, there are some
Kondo phonon-satellite peaks that show up, as evidenced by very recent experiments [15–17].
According to the general understanding, in the non-EPI case the bias voltage plays a role
similar to temperature, which means that the differential conductance decreases logarithmically
as Vbias increases [50]. One may wonder here why the apparent sharp asymmetric features
of the Kondo phonon peaks in figure 3 have not been smoothed out by bias voltage. It is
because the Fermi distributions in the leads have sharp Fermi surfaces at very low temperature;
hence the sharp features of the spectral function, as shown in figure 1(b), can still be preserved
even for finite bias voltage. As illustrated in the inset of figure 3, once an asymmetric peak
in the spectral function matches one of the Fermi levels, a sharp asymmetric differential
conductance peak will appear. Therefore, the apparent sharp asymmetric features in G(Vbias)

are just the manifestations of the asymmetric lineshapes of the spectral function, which contain
both contributions from the phonon-assisted Kondo processes and the phonon-assisted resonant
tunnelling processes as well. These sharp asymmetric features can only be smoothed out with
the increasing temperature.

It is worth pointing out the resemblances between our spin-degenerate results and those
by the real-time diagrammatic formulation [24, 25] or the generalized Schrieffer–Wolff
transformation [30], where the discontiguous and asymmetric lineshape features of the Kondo
phonon-satellites in the spectral function or the differential conductance can also be observed,
but have not yet been clearly pointed out and properly explained.
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(a) (b)

Figure 4. The calculated total (dash–dotted (blue)) and spin-resolved (solid (black) line for spin-
up, and dashed (red) line for spin-down) spectral functions in the equilibrium (a), and the nonlinear
differential conductance (b) in the presence of finite Zeeman splitting. Here ε̄0 = −2.5�, g = 0.6,
kBT = 2 × 10−4�, U0 = 100�, h̄ω0 = 0.1�, and  = 0.2�.

Figure 5. The spin-resolved spectral function (solid (black) line for spin-up, dashed (red) line for
spin-down component) for different Zeeman splitting: (I) = 0, (II) = 0.01�, (III) = 0.08�,
and (IV)  = 0.2�. The other parameters are taken as Vbias = 0, ε̄0 = −2.5�, g = 0.6,
U0 = 100�, and h̄ω0 = 0.1�.

4.2. Finite Zeeman splitting case

Now let us take a look at the spin non-degenerate case, where a Zeeman splitting of  for the
localized level may be induced by a local magnetic field, i.e. ε↑ = ε0+/2 and ε↓ = ε0−/2.

Without the EPI, our calculation for the spin-splitting case shows that, compared to the
spin-degenerate case, the Kondo peak in the spin-resolved spectral function A↑(ω) (or A↓(ω))
generally decreases in magnitude and shifts away from µ by  (−), which agrees with
previous researches [24–29, 42, 43]. When the EPI turns on, as shown in figure 4(a), the
phonon-satellite structure may develop in a distinct way, that is, for moderate Zeeman splitting
only the satellites above (below) the main peak appear in A↑(ω) (A↓(ω)).

This peculiar feature in the spin-resolved spectral function stems from the interplay
between the EPI and Kondo effect in the presence of the finite spin-splitting. It also manifests
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(c)

Figure 6. Maps for the spin-up (a) and spin-down (b) spectral functions as functions of ω and eVbias.
The sections are plotted in (c) for four typical bias voltages: (I) eVbias = 0, (II) eVbias = 0.03�,
(III) eVbias = 0.1�, (IV) eVbias = 0.45�. Here  = 0.2�, ε̄0 = −2.5�, g = 0.6, U0 = 100�, and
h̄ω0 = 0.1�.

itself in the differential conductance. As shown in figure 4(b), there is no satellite appearing in
the region µ− < eVbias < µ+, which is generally true as long as the system is at very low
temperature. According to our simple picture above (cf figure 2), this is easy to understand.

The spin-resolved spectral functions for four different Zeeman splitting values are plotted
in figure 5, demonstrating that when the Zeeman splitting turns on, the overall Kondo peaks in
the spin-down spectral function shift towards the low energy, while those for spin-up undergo
a blue shift. The Kondo satellites above (below) the main peak in the spin-down (up) spectral
function decrease significantly as the Zeeman splitting is increased, then disappear when 
exceeds the line-width of the Kondo peak which is proportional to the Kondo temperature
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kBTK. However, for larger splitting, the main Kondo peak itself will be much suppressed, so
that this spin-dependence of the Kondo phonon-satellites will not be resolved at all.

To understand how this pattern develops, it is helpful to recall that the satellite on different
sides of the main peak is associated with different spin exchange process as depicted in figure 2.
This peculiar pattern for finite Zeeman splitting indicates that the dominant contribution to the
main peak in A↑(ω) comes from the coupling of the local state with the excited conduction
electron states, while for A↓(ω) the dominant contribution comes from the coupling with the
excited hole states. If  = 0, as illustrated in figure 2, both spin exchange processes contribute
to the Kondo main peak. When  starts to increase, both spin exchange processes decay in
magnitude, but at different rates. When Zeeman splitting increases further, it would be possible
that while one spin exchange process remains finite, the other is already totally suppressed. This
results in the spin separation of the Kondo phonon-satellites in the spectral function. However,
when  
 kBTK, both processes are unlikely to happen and finally the Kondo peaks are
quenched.

The spin-down (up) spectral function for fixed Zeeman splitting is shown in figure 6(a)
(figure 6(b)) as a function of ω and Vbias, in which the highlighting cross lines correspond to the
Kondo satellites. Explicitly, the sections at the four typical bias voltages marked by the dashed
lines in figures 6(a) and (b) are also plotted in figure 6(c). One can clearly see that, when the
bias voltage turns on, each Kondo peak is separated into two sub-peaks related to two Fermi
levels, respectively. These two sub-sets of Kondo satellites separate from each other further
when Vbias increases, resulting in the peculiar pattern as shown in figure 6(c).

5. Conclusion

In summary, taking advantage of the improved treatment of the electron–phonon interaction
and the extended equation of motion approach, we have systematically investigated the
Kondo effect in the SMT in the presence of electron–phonon interaction, finite bias voltage,
and Zeeman splitting. The Kondo phonon-satellites observed in recent SMT transport
experiments [15–17] have been confirmed and explained by our results. Moreover, peculiar
patterns of Kondo phonon-satellites in the spectral function as well as the differential
conductance have also been predicted and explained by a clear physics picture. Although
it is the interplay between the EPI and Kondo processes that is discussed here, the physics
picture and the theoretical calculation presented here may also be applicable to some other
cases. For instance, the interplay of electronic internal excitations and the Kondo processes can
also manifest themselves in some parallel Kondo satellites [8].
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